X3/SX3 Power Feed Clutch

Home Model Engine Machinist Forum

Help Support Home Model Engine Machinist Forum:

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.

Paula

Well-Known Member
Joined
Jan 27, 2008
Messages
87
Reaction score
1
Those of you who have installed and used the optional power feed unit for your Sieg X3 or SX3 (Grizzly G0619) bench mill, have probably been disappointed to find that it imparts a most aggravating drag on the x-axis feed screw. This is due to the fact that, unlike the power feed units generally found on industrial-sized mills, the gearmotor of Sieg unit remains coupled to the feed screw even when the power feed unit is turned off. The result is that manual movement of the table, particularly fine movement, where a measure of “feel” is desired, is rendered nearly impossible.

To overcome this disadvantage, I installed a clutch (of sorts) between the x-axis feed screw of my G0619 mill and the power feed unit. Thus, when I want to move the table manually, the power feed unit is simply uncoupled from the feed screw. Since completing this modification, several others have expressed a desire to equip their mills with such a device. To that end, I offer the following drawings and pictures that I used in modifying my own mill. While not the most simple undertaking, neither is it particularly difficult, requiring only modest machining skills, access to a lathe (ideally, one that will pass a 5/8” diameter rod through the spindle) and a willingness to make a slight modification to your mill. Probably not the ideal project for the rank beginner, but if you have some machining experience, and have a good mechanical aptitude, you shouldn’t have any problems.

The output from the power feed unit is normally transferred to the longitudinal feed screw by means of a “blade coupler”. The blade on the power feed’s output shaft engages a corresponding slot in the end of the feed screw. Here is the basic layout (click for a larger view):



The method I came up with involves modifying the end of the existing feed screw, and introducing a sliding coupler between the feed screw and the output shaft of the power feed unit. The sliding coupler itself is coupled to the feed screw by means of a roll pin and slot arrangement. Alignment of the feed screw with the slotted end of the coupler is maintained with accurate sliding fits between the coupler I.D. and feed screw O.D. Here is the sliding coupler arrangement, shown in the “engaged” position (click for a larger view):



Note that the coupler is designed to operate with a .25” axial movement between the “engaged” and “disengaged” positions. Here is a view of the arrangement, shown in the disengaged position (click for a larger view):



A word to the wise: the dimensions shown on the drawings were derived from measurements I took from my machine, and should work fine for you, provided your mill is identical. However, it’s entirely possible that routine production variations will require a slight deviation. I strongly urge you to remove your power feed unit, and check all the relative dimensions (output shaft protrusion, blade width, how far the feed screw end is recessed in the bearing, etc.) to verify the arrangement. Make a sketch or CAD drawing to confirm the exact amount that the feed screw must be shortened.

You will probably want to begin by making the coupler. I used a piece of 1” dia. mild steel (CRS) to make this part:

SMCOUPLR.jpg


It is important that the three “working” diameters of this part (.620 & .4375 bores, and the .472 O.D.) be precisely concentric. The turned down portions (.75 & .472 dia’s) could be turned first, in the same setup, using a three-jaw chuck, but when the part is inverted to bore the opposite end, be sure to employ some accurate means for re-centering the part, such as a 4-jaw chuck or collet.

It would be a good idea to double-check the dimensions on your machine to verify the bore/O.D. dimensions. The .620 bore should give a thousandth or so clearance on the O.D. of your feed screw threads. Adjust the bore dimension as required to give a smooth running clearance (“slip, but no slop”). Likewise with the .472 dimension. Carefully check your feed screw bearing I.D. to verify the clearance requirement. As for the .4375 dimension, I used a 7/16 on-size reamer to size this hole (after boring to within a couple thousandths), but it is really only important that this hole be concentric with the .620 hole, as the feed screw shank can later be turned to give an accurate fit.

Note: Using a 7/16 reamer is also a good idea because it provides an easy way to clean out any burrs that remain after milling the .140” thru-slots.

The drawing shows an optional knurl on the 1” O.D. surface. I thought this might be very helpful for grasping the sliding coupler when I first conceived this project, and was intending to add one after my first trial fit of the coupler system, but it turned out to be completely unnecessary in actual use. If you enjoy knurling, go ahead and use it.

With the coupler finished, it’s time to remove the feed screw from the mill. I didn’t have any problem with this, but you want to proceed carefully if you have not had your screw out before. There may be some slightly different configurations to the feed screw bearing/index collar/handwheel setup on various mills. Here is the parts diagram for my mill:

PARTS.jpg


Removal of the #266 X-Axis Bearing Seat (the parts list incorrectly refers to this part as the “Y-Axis Bearing Seat”) might be slightly difficult. As a first step, I suggest removing the (2) 6MM screws (#217). Lock the table and use the handwheel to feed the table to the right. This should free up the bearing seat, perhaps with some light tapping from a brass hammer as well. With the bearing seat “unseated” from the table, but before removing the assembly from the machine, go ahead and remove the handwheel by removing screw #298. Then remove hub #299 by tapping out its taper pin (#276). Use caution at this point, as the ball bearings (#255) will be liberated from their housings. With the #299 hub removed, the #266 bearing seat can be removed the rest of the way. A slight prying action between the end of the table and the bearing seat might be needed here. With the bearing seat removed, the feed screw can be unscrewed from its nut and removed from the machine.

Note: the feed screw is not hardened (at least, mine wasn’t) though it seems to be made of a good grade alloy steel, and machines quite nicely with HSS tools. I used a 4-jaw chuck to hold the screw for turning, with the long end passing back through the spindle.

The feed screw end is best machined in two steps. The first step is basically to establish a reference point 2.018” from the original end of the screw. Therefore, the .45” dia. dimension is not critical at all.

SMSCREW.jpg


Following Step 1, the screw can be removed from the lathe for sawing off the excess length, or you can part it off in the lathe. Face the end of the cut-off screw accurately to the .688 dimension. The .4370” dia. should be a smooth running fit in the in the corresponding hole in the feed coupler.

Accurately locating and drilling the 1/8” hole in the end of the feed screw could pose a slight dilemma, since you would probably use your mill to do this -- which now lacks a longitudinal feed screw(!) If your mill has digital readouts, you are in luck, as you can still accurately position the table manually (tapping on the end of the table with a soft-faced hammer works wonders when you get close!) If you don’t have digital readouts, you may have to use your ingenuity a bit more. A milling attachment in the lathe would be another alternative.

Before reassembling the mill, check the fit of the coupler on the modified feed screw. It should slide freely, but without any noticeable slop, or side clearance. Also, check to make sure that the 1/8” drilled hole lines up with the slot in the coupler. If everything looks good, lubricate all working surfaces (including the feed screw threads, if necessary), and go ahead and thread the feed screw back in the mill far enough that the coupler can be placed on the end of the screw. Now proceed to thread the screw the rest of the way home, making sure to guide the end of the coupler as needed, so that it seats in the left-end feed screw bearing.

Reassemble the components at the handwheel end in the reverse order of disassembly (making sure that the bearings have ample grease). Now comes the moment of truth. Before driving the 1/8 x 3/4” split roll pin into place, move the sliding coupler back and forth to check for free movement. At the same time, look through the slot in the coupler to see if the 1/8” hole lines up with the ends of the slot at the extremes of the coupler’s movement. (In other words, verify the operation of the coupler as though the pin were in place, so that if you need to disassemble everything to make a slight modification, at least you won’t need to drive the pin back out.) If everything looks good, go ahead and drive the pin into place. This will be an awkward exercise, at best, given the tight clearance and upside-down configuration.

Here is what the finished installation looks like on my mill, in both the engaged and disengaged positions:

FINIS1-1.jpg


FINIS2-1.jpg


I’ve been using my mill with this setup for around six months now, and couldn’t be happier with how it operates. Reaching under the table to shift the coupler one way or the other is much simpler than you would think. To engage the coupler, just push it to the left while turning the handwheel slowly. To disengage, push the coupler to the right, with the power feed turned off. I originally thought that some kind of detent mechanism might be necessary to hold the coupler in the engaged and disengaged positions, but this has turned out not to be the case. Good luck!

Paula

EDIT: After originally posting this, I heard back from one individual who implemented this mod. Although it all worked out well, he wound up having to change two dimensions on the coupler to fit his particular machine. Therefore, make sure to check all dimensions with your own mill before commencing machining, as apparently the manufacturing tolerances vary quite a bit more on these machines (especially the PF unit) than I would have thought.
 
Paula,

An ingenious solution to a vexing problem. :bow:

Best Regards
Bob
 
Great little article, great drawings, great pictures. You gave it to us, now go send it in to HSM or MW and get paid for it! ;D You really should, if you haven't already. Good stuff!

Milton
 
Very nice article, Paula. I don't have a Sieg, but now I kind of want to go buy one!

Good Job!

Chuck
 
Any chance of sharing this? I can't find any link or reference in this thread.
link requested. Thanks
 
Very nice!!!! I just purchased a G0619 mill with that power feed. If I get brave enough I want to do this to my mill.
I noticed you have a Dro on your mill, would you mind putting up a few photos of your install? I know this thread is old but I hope you still come to look from time to time. How did you or did you make any changes to lock the spindle for tool changes?

I've found that the mill does not have a good design for locking the spindle. I seen one or two good designs but still want to look at all the mods done to decide which one's I want to do. If you have other mods I'd sure like to see them as well. Thank you so much!
I have a Grizzly G0602 lathe and I designed a reverse tumbler gears and a speed reducer for this machine and will share the designs for free to anyone wanting to modify their machine. there's a complete write up in "projects in metal" forum for the reverse tumbler gears, I haven't done a drawing for the speed reducer yet too lazy and busy with all the other stuff to get my machine where I want them to be for ease of using.
Norman
 
Paula, I did your power feed mod. it works very well!! The dia. measurements were dead on. The changes I made were to the length of cutting the mill's feed screw, I didn't have to cut it quite as short as the plans show. I think it was 0.094 less than shown. But your drawings worked great. Thank you! I also think your plans for the spindle lock worked great at least I think they were your plans, again THANK YOU!! Those 2 mods make a big difference in the mill, makes it easier to use.
Norman
 
I have a Griz G-0619 and I have what looks like that same Power feed. Except I bought it from Little Machine Shop. And the first time I used it I had the same problem of with the table manual drive,,,,,until I found that by putting the direction selector in the neutral position eliminated the resistances for manual movements. Am I missing something or is this a simple solution?
Mel
 
Norman said:
Paula, I did your power feed mod. it works very well!! The dia. measurements were dead on. The changes I made were to the length of cutting the mill's feed screw, I didn't have to cut it quite as short as the plans show. I think it was 0.094 less than shown. But your drawings worked great. Thank you! I also think your plans for the spindle lock worked great at least I think they were your plans, again THANK YOU!! Those 2 mods make a big difference in the mill, makes it easier to use.
Norman

Hi Norman,

Sorry for the late reply... I've been going in other directions lately, and don't check in here as frequently as I'd like to. Anyway, thanks for the nice comments! I'm glad the power feed clutch and spindle lock worked out for you. I really enjoy them too.

For anyone else who might be interested, the information on the spindle lock (and an improved drawbar) can be accessed at the SIEG-SX3-C6B Yahoo forum:

http://finance.groups.yahoo.com/group/SIEG-SX3-C6B/

The drawings and pictures are in the "Files" section. You need to be a member of that group to access the files, but membership is well worthwhile if you own an SX3 mill.

Paula
 
lugnut said:
I have a Griz G-0619 and I have what looks like that same Power feed. Except I bought it from Little Machine Shop. And the first time I used it I had the same problem of with the table manual drive,,,,,until I found that by putting the direction selector in the neutral position eliminated the resistances for manual movements. Am I missing something or is this a simple solution?
Mel

Hi Mel,

I'm not sure about the power feed unit that Little Machine Shop sells -- yes, it does look exactly the same. The one I purchased from Grizzly definitely doesn't have a "neutral" position, as such. The reduction gears between the DC motor and X feed screw are engaged as long as the unit is installed on the machine. So whenever you turn the handwheel, you are spinning the gear motor at some multiple ratio of the feed screw RPM. Whether this torque drag constitutes a problem is up to the operator, I suppose. I found it quite annoying for manual feed operations.

Paula
 
Must be nice to have a machine the power feed will fit on. I've got the same machine EXCEPT mine has a longer feed screw and a hub on the left end plate that prohibits the use of the LMS feed unit. Planning to use a 12 volt drill for my power feed.

:(
 
Great minds think alike! I came up with something similar....and works like a charm!!! Except yer drawings are sweet and mine were on a bar napkin ;)
 
I know that the grizzly power feed, even when the direction lever is in neutral you still feel the drag of the motor sort of a fine jerking feel in the hand wheel, must be the motor's rotor going by the magnets. Paula's clutch makes it all better!!!!
Paula's spindle lock is also well worth the trouble of making, once it's installed it looks like it was factory installed.
I didn't have the proper sized cold rolled steel so I used the counter weights off of a Briggs(5 HP) all cast iron crankshaft to make the small parts that needed to be made. The cast iron crank cut like butter. I've got a few of those old cranks so I'll be using them for other small projects.
Thanks again Paula! Happy new year everyone.
Norman
 
Why not make a spacer up to fit between the item 266 and the bed 260 the depth of the tongue in the drive end, this would pull the screw out of engagement with the PF dog

when not required release the two cap head screws and remove the spacer the hold could be slotted to enable a drop in spacer

this way the PF is disengaged and no mods are done to the mill


Stuart
 
to reply to my own post

all it requires is a piece of 5 mm plate ( i used ali ) three slots to suit your mill one to clear the feed screw and two to clear the fixings and dowel pins


it works a treat and no mods to the mill

Yes its not as elegant as Paula's but as I need the PF for about 5 % of the time it works for me and I can feel the cut on 2 mm cutters with the plate in

Stuart
 
To go from power feed to manual on your design it looks a little more work than the system that Paula designed. Your design does make it so you don't permanently change the mill or good for anyone that doesn't have a lathe or don't want to cut on the feed screw. ;D
Norman
 
that is perfectly true Norman

yes its more trouble , but it works for me as I do a lot of small cutter work with infrequent long facing cuts

My main concern over Paula's excellent design is that it could slip out of engagement due to wear on the slot /tongue and the minimal engagement could contribute this action



as I said it is not a replacement of Paula's bit a KISS alternative for people who do not wish to mod their mill



Stuart
 
Back
Top